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Abstract— Microsimulation models are used to predict outcomes 
under a range of scenarios and are used to inform health policy. 
Models are driven by several unknown parameters that are selected 
so that models match observed or expected outcomes, a process 
called calibration. Our work address statistical and computational 
challenges faced when calibrating a microsimulation model for 
colorectal cancer (CRC). We demonstrate the use of the Extreme-
scale Model Exploration with Swift/T (EMEWS) framework on high 
performance computing resources in calibrating a colorectal cancer 
model (CRC-SPIN) with the use of Incremental Mixture Importance 
Sampling (IMIS). Adaptive model exploration is required to sample 
the high-dimensional model parameter space and EMEWS enables 
the integration of existing statistical and scientific codes while 
providing scalability to the largest scale supercomputers. 
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I. (IMPORTANCE OF) CRC MODELING 
Microsimulation models synthesize evidence about disease 

processes to project population-level outcomes under different 
policy scenarios. Simulation models are increasingly used to 
inform health policy decision. For example, models have been 
used to inform U.S. cancer screening guidelines, including 
guidelines for colorectal cancer (CRC) screening [1]. 

II. CRC-SPIN 
CRC-SPIN simulates individuals that begin in a disease-

free state and may progressively transition to an adenoma state, 
a preclinical CRC state, and clinically detected CRC state, 
from which they may die from CRC [2] [3]. Individuals may 
die from other causes at any time. Adenoma risk varies 
systematically by age and sex, and varies randomly across 
individuals. Individuals may acquire multiple adenomas and 
preclinical cancers. The duration of the both the adenoma state 
(dwell time, the time to progression from adenoma to 
preclinical disease) and the preclinical cancer state (sojourn 
time, the time from preclinical cancer onset to clinical cancer 
detection) varies randomly across individuals and adenomas 
within individuals.  

CRC-SPIN is written in R and contains 23 unknown 
parameters that are informed through a process of model 
calibration. There are 8 calibration targets: statistics from 7 
studies and incidence from the SEER registry. A recent 
validation showed that while CRC-SPIN accurately predicted 

the impact of screening on CRC-mortality, the simulated 
sojourn time was likely too short [4], indicating the need for 
model recalibration. 

III. INCREMENTAL MIXTURE IMPORTANCE SAMPLING 
Calibration of microsimulation models is difficult for two 

reasons. First, the number of parameters is large relative to the 
available data. Incremental Mixture Importance Sampling 
(IMIS) provides a useful tool for exploring the parameter space 
[5].  IMIS begins with a random search, and incrementally 
adds points from high likelihood regions. The second challenge 
is computational. The IMIS algorithm requires evaluation of 
the likelihood at each sampled parameter vector, but this 
likelihood is not closed form, and must be simulated. For each 
sampled point the algorithm uses CRC-SPIN to predict 
observed outcomes at each calibration target with a relatively 
large simulation sizes to minimize stochastic error. 

IV. EMEWS 
Our framework, Extreme-scale Model Exploration with 

Swift/T (EMEWS) [6] uses the general-purpose parallel 
scripting language Swift [7] [8] to generate highly concurrent 
simulation workflows. These workflows enable the integration 
of external model exploration (ME) algorithms to coordinate 
the running and evaluation of large numbers of simulations. 
The general-purpose nature of the programming model allows 
the user to supplement the workflows with additional analysis 
and post-processing as well.  

EMEWS enables the user to plug in both ME algorithms, 
such as IMIS, and scientific applications, such as CRC-SPIN.  
The ME algorithm can be expressed in Python, R, C, C++, 
Fortran, Julia, Tcl, or any language supported by Swift/T. The 
scientific application can be implemented as an external 
application called through the shell, in-memory libraries 
accessed directly by Swift (for faster invocation), or Python, R, 
Julia, and JVM language applications. Thus, researchers in 
various fields who may not be parallel programming experts 
can simply incorporate existing ME algorithms and run 
computational experiments on their existing scientific 
application without explicit parallel programming. A key 
feature of this approach is that neither the ME algorithm nor 
the scientific application is modified to fit the framework. This 
is implemented in a reusable way by connecting the parameter 
generating ME algorithm and output registration methods to 



interprocess communication mechanisms that allow these 
values to be exchanged with Swift/T. EMEWS currently 
provides this high-level queue-like interface with three 
implementations: EQ/Py, EQ/R and EQ/C (EMEWS Queues 
for Python, R, and C/C++).  

 

 
Figure 1: Overall relationship between IMIS and CRC-SPIN within the 
EMEWS framework. 

Figure 1 illustrates the main components of the EMEWS 
framework as it interacts with IMIS and CRCSPIN. The main 
user interface is the Swift script, a high-level program. The 
Swift script receives parameters for evaluation from IMIS via 
the EMEWS EQ/R queue. Swift then distributes these 
parameters to parallel worker processes that run the CRC-SPIN 
model using these parameters. The results of these runs are 
gathered by the Swift script and passed back to IMIS which in 
turn produces additional parameters for evaluation based on the 
results of the CRC-SPIN runs. 

V. CALIBRATING CRC-SPIN WITH EMEWS 
The initial CRCSPIN calibration was run with EMEWS on the 
Midway cluster at the University of Chicago Research 
Computing Center. An initial sample of 1000 priors was 
evaluated, with 2 subsequent samplings of 500 each. Figure 2 
shows initial results from this proof-of principle exercise. After 
a first step, a random draw from the parameter space, the 
algorithm determined the point with the most likely point 
(represented in light pink). The second step adds to the sample, 
using a multivariate normal random draw centered at this most 
likely point and then determines the next center point to fill in 
(pictured in red). In this example, points continue to be filled in 
nearby, though we anticipate greater movement with 
subsequent iterations. Ultimately, the algorithm will result in a 
sampling of points from the parameter space with density 
proportional to the likelihood. These plots also demonstrate the 
abilty of the algorithm to detect ridges in the likelihood, 
indicative of colinearity, as shown in the lower righthand plot 
of mean adenoma risk and change in adenoma risk from the 
ages of 20 to 50 years old. 

VI. CONCLUSIONS AND FUTURE WORK 
Between now and November, we will complete the 

calibration effort, moving from the Midway cluster to the IBM 
Blue Gene/Q Mira at the Argonne Leadership Computing 
Facility at Argonne National Laboratory. This will enable us to 

increase the sampling of the parameter space, with a large 
initial random draw of 46,000 with subsequent steps of 1,000 
additional draws. We expect the program to require 
approximately 3,000 steps to fully explore the parameter space. 
The IMIS algorithm will result in a simulated draw from the 
posterior distribution of model parameters which will provide 
new information about the uncertainty of calibrated parameters 
and relationships among parameters. 

 
Figure 2: Likelihood plots from preliminary IMIS sampling of CRC-SPIN 
model runs. The plots show points with non-zero likelihoods in light grey, 
points with negative log-likelihoods greater than or equal to 65th percentile 
across points with non-zero likelihoods- in dark grey, points with negative 
log-likelihoods greater than or equal to 95th percentile in black, and the best 
point(s) in terms of log likelihood in red. 
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